Vortrag zur Netzwerktechnik

Versammlung des DARC e.V. Ortsverbands Vulkaneifel K34

Erstellt und vorgetragen von

Ralf Wilke DH3WR

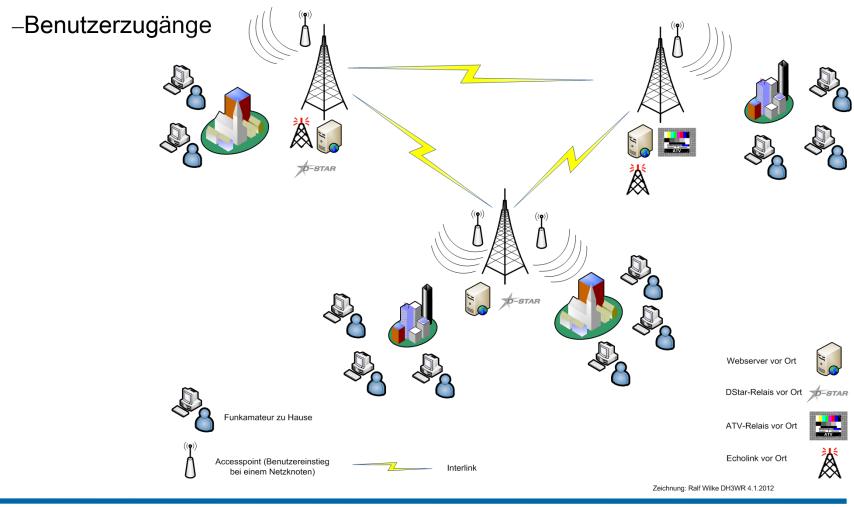
www.ralfwilke.com

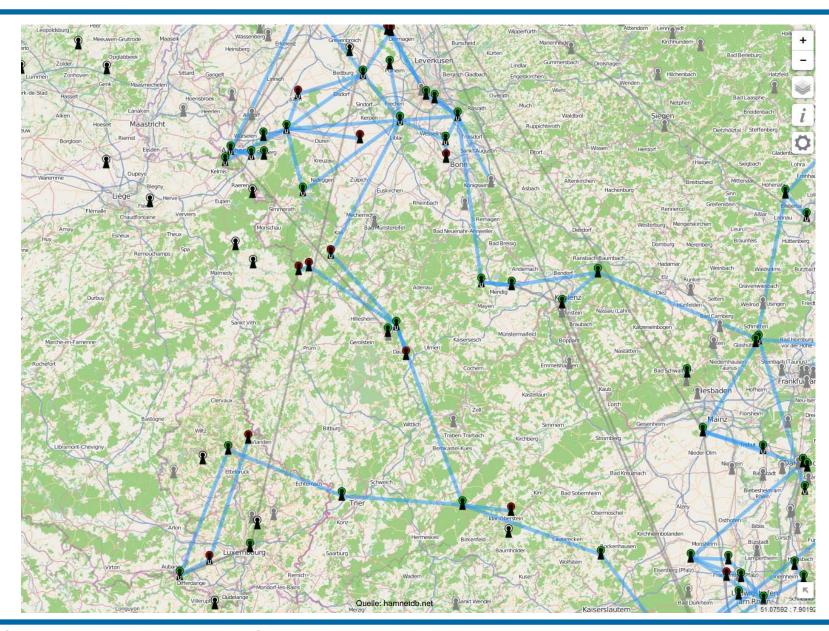
10.10.2014

Inhalt

- Überblick Hamnet
- Begriffe
- ISO/OSI Modell
- IPv4-Protokoll
- Routing (BGP und OSPF)
- Neue Anwendungen

Hamnet als Nachfolger von Packet-Radio


- Beginn des Packet-Radio Netzes Anfang 1980er Jahre
- Links hauptsächlich bei 1.2 GHz (23cm Band)
- Knotenpunktnetz
- Routing
- •Benutzereinstieg auf 70 cm mit 9k6
- Textbasierte Anwendungen
 - -DX Cluster
 - -Mailbox
 - –Chat (Convers)



Struktur des Hamnet

- Das Hamnet ist in drei Bereiche aufgeteilt
 - -Interlink zwischen Knoten
 - –Dienste am Standort der Knoten (Webserver, Echolink)

Aktive Linkstrecken in der Eifel

Amateurfunk heute: Gesprächsauszug

Ralf Wilke RWTH Amateurfunkgruppe

Von: Ulrich

Gesendet: Freitag, 13. Juni 2014 18:01

An: Ralf Wilke Amateurfunkgruppe RWTH Aachen

Betreff: Neue Amateurfunkbegriffe

Digi-Rechner DB0II DMR-Relais-Funkhardware DB0II und VPN Tunnel zur Versorgung DO0MG-Hardware, falls diese kein DHCP benutzt

Ebenfalls wurde bei DB0II und DB0KX OSPF aktiviert und der Link KX-II und II-WA laufen nun über OSPF.

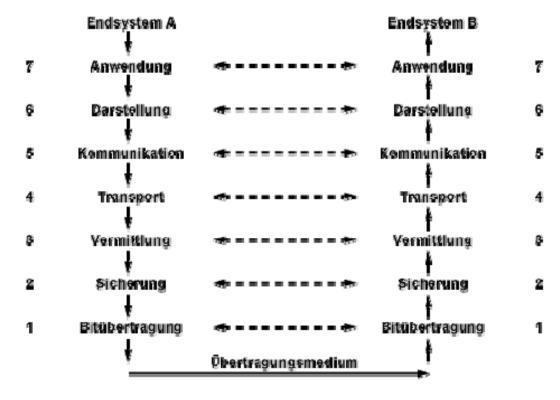
Der Core-Router bei db0ii hat nun die U/S-IP 44.225.58.193 und ist im AS 64634 Border-Router. D.h. er braucht ein Full Mesh mit den anderen Border-Routern des AS 64634, welche da sind:
DB0KOE, DB0KPG, DB0EIF

Ich habe diese peer bei DB0II und DB0EIF bereits angelegt. Ich bitte die entsprechenden Sysops dies ebenfalls zu tun.

Des Weiteren ist der Link II DSP nun eBGP und nicht mehr iBGP+Conf. Ich habe den peer bei DB0II bereits umgestellt. Wenn der DSP-Link wieder gehen sollte, bitte ebenfalls umstellen.

Der Link GOS-II war im AS64632 mit IPs angesiedelt. Diese mussten nun auf welche des AS64634 umgestellt werden. Neue Zuordnung: http://hamnetdb.net/?g=44.224.29.232/29

Einige grundlegende Begriffe

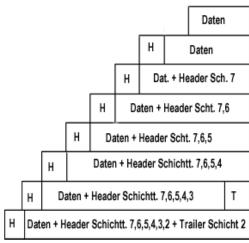

- Protokoll: Eine vereinbarte Abfolge von Nachrichtenaustauschen mit vereinbarter Bedeutung der Nachrichten (Beispiel: Restaurantbesuch).
- Netzwerk: Ein Zusammenschluss von Computern, die auf bestimmte Weise miteinander kommunizieren können (Beispiel: Ethernet, WLAN, ISDN)
- Paket: Eine Zusammenfassung von Daten zu einer Einheit, die als Ganzes durch ein Netzwerk übertragen werden kann.
- Dienst: Eine Anwendung auf einem Server, der dem Nutzer einen gewissen Nutzen bringt (Beispiel: Webserver, VoIP Server, Webcam, ...)
- Routing: Das zielgerichtete und wohldefinierte Weiterleiten von Daten von einem Knoten zum anderen.
- IPv4: Internet Protokoll Version 4, dass im Hamnet und Internet verwendete Protokoll, mit dem Daten innerhalb eines Netzwerkes ausgetauscht werden können (Beispiel: IP Adresse: 192.168.4.3)
- BGP: Ein Routing-Protokoll, welches zum automatischen Konfigurieren des Routings innerhalb eines Netzwerkes verwendet wird
- OSPF: Ein weiteres Routing-Protokoll, mit gewissen Vorteilen zu BGP

Grundlegendes zum Hamnet

- Basierend auf kommerzieller WLAN-Technik:
 Standardisiert, preiswert und mittelfristig verfügbar
- Nutzung von etablierten und zuverlässig funktionierenden Techniken aus dem Bereich des Internet (TCP/IP, 802.11, Ethernet, BGP und OSPF)
- Abgeschlossenes Netzwerk für Funkamateure, d.h.in der Regel keine Verbindung zum Internet
- Ausnahmen:
 - Einzelne Übergangspunkte, um Dienste wie DStar, Echolink, DMR, usw. anzubieten
 - VPN-Zugang als Teilnahmemöglichkeit für Funkamateure ohne erreichbaren Benutzereinstieg

ISO/OSI Referenzmodell

- Strukturierte Trennung von verschiedenen Ebenen bei einer digitalen Kommunikation
- Ermöglicht Flexibilität und Unabhängigkeit


Quelle: www.elektronik-kompendium.de

ISO/OSI Referenzmodell

Beispiele für Anwendungen der Schichten

OSI-Schicht	TCP/IP-Schicht	Beispiel			
Anwendungen (7)					
Darstellung (6)	0	HTTP, FTP, SMTP, POP, Telnet, OPC UA			
Sitzung (5)	Anwendungen				
		socks			
Transport (4)	Transport	TCP, UDP, SCTP			
Vermittlung (3)	Internet	IP (IPv4, IPv6)			
Sicherung (2)	Matanagan	Ethamet Telesa Bus Telesa Bisa EDDI ID-10			
Bitübertragung (1)	Netzzugang	Ethernet, Token Bus, Token Ring, FDDI, IPoAC			

Quelle: Vortrag von Andreas Wißkirchen auf dem Hamnetworkshop 4.5.13 in Aachen

H = Header

T = Trailer

Quelle: http://www.windows-netzwerk-hilfe.de

IPv4 Grundlagen

- Eine IP-Adresse ist eine eindeutige Bezeichnung eines Teilnehmers (ähnlich Name und Anschrift)
- Sie besteht aus 32 Bit, d.h. maximal sind ca. 4,3 Mrd. Adressen verfügbar.
- Notation: aaa.bbb.ccc.ddd mit (a,b,c,d von 0 bis 255)
- Im Amateurfunk benutzen wir den Bereich von 44.0.0.0 bis 44.255.255.255
- Ein IP Paket kann 46 bis 1550 Byte Nutzdaten enthalten

0–3	4–7	8–11	12–15	16–18 19–23		24–27	28–31		
Version	IHL	Type of	Service	Gesamtlänge					
	Identif	ikation		Flags Fragment Offset					
Т	ΓL	Protokoll			Header-Prüfsumme				
	Quell-IP-Adresse								
Ziel-IP-Adresse									
	evtl. Optionen								

Quelle: Vortrag von Andreas Wißkirchen auf dem Hamnetworkshop 4.5.13 in Aachen

Einige Beispiele zu bekannten Netzwerken

Start- Adresse	Letzte Adresse	Kompakte Notation	Anwendung
192.168.0.0	192.168.0.255	192.168.0.0/24	Privates lokales Netzwerk
10.5.0.0	10.5.255.255	10.5.0.0/16	Großes lokales Netzwerk (z.B. in Firmen)
127.0.0.1	127.0.0.1	127.0.0.1/32	Loopback Adresse auf jedem Rechner (dient zur lokalen Kommunikation von Diensten)
44.0.0.0	44.255.255.255	44.0.0.0/8	Amateurfunkspezifische Anwendungen
44.224.0.0	44.224.255.255	44.224.0.0/16	Richtfunkverbindungen im Hamnet in Deutschland
44.225.0.0	44.225.255.255	44.225.0.0/16	Benutzer und Dienste im Hamnet in Deutschland

Details zu IP Adressen

 Zur Aufteilung in Verwaltungseinheiten (Subnetze) kann jede IP Adresse in 2 Teile aufgeteilt werden:

Subnetz-Maske (kompakt): 44.225.56.130/24, da die ersten 24 Bit "1" sind.

 Anhand der IP und Subnetz-Maske wird bestimmt, ob ein Paket lokal zugestellt werden kann oder geroutet werden muss.

Einige Beispiele zu Subnetzen im Hamnet

Start-Adresse	Letzte Adresse	Kompakte Notation	Anwendung	An- zahl
44.225.56.240	44.225.56.225	44.225.56.240/28	Lokales Netzwerk für Dienste und Benutzer bei DB0EIF	14 (16)
44.225.56.128	44.225.56.159	44.225.56.128/27	Lokales Netzwerk für Dienste und Benutzer bei DB0SDA	30 (32)
44.224.29.168	44.224.29.175	44.224.29.168/29	Link-Einheiten DB0EIF DB0UT	6 (8)

Die erste und letzte IP aus einem Subnetz können nicht für Geräte genutzt werden. Dies sind die Netz-Adresse und Broadcast-Adresse.

Vergabe-Konventionen

- Die IPs im Hamnet werden über die Datenbank hamnetdb.net koordiniert.
- Beispiel für intuitive Vergabe bei einer Link-Strecke

IP	Hostname	Funktion		
44.224.29.168		Nicht benutzbar		
44.224.29.169	bb-db0ut.db0eif.ampr.org	Router-Anschluss DB0EIF		
44.224.29.170	link-db0ut.db0eif.ampr.org	Funk-Hardware DB0EIF		
44.224.29.171		Nicht verwendet		
44.224.29.172		Nicht verwendet		
44.224.29.173	link-db0eif.db0ut.ampr.org	Funk-Hardware DB0UT		
44.224.29.174	bb-db0eif.db0ut.ampr.org	Router-Anschluss DB0UT		
44.224.29.175		Nicht benutzbar		

Routing

- Routing ist die zielgerichtete Weiterleitung von Paketen, die nicht lokal zugestellt werden können.
- Router brauchen eine Routing-Tabelle, in der für bestimmte Subnetze Nachbar-Router definiert sind.
- Pakete werden anhand dieser Tabelle weitergeschickt.
- Sollte kein Eintrag für eine Ziel-IP vorhanden sein, wird eine Standart-Route genommen (Default-Gateway)
- 2 Arten von Routing-Einträgen:
 - Statische Routen (Manuell konfiguriert, fest)
 - Dynamische Routen (Automatisch eingetragen, flexibel)

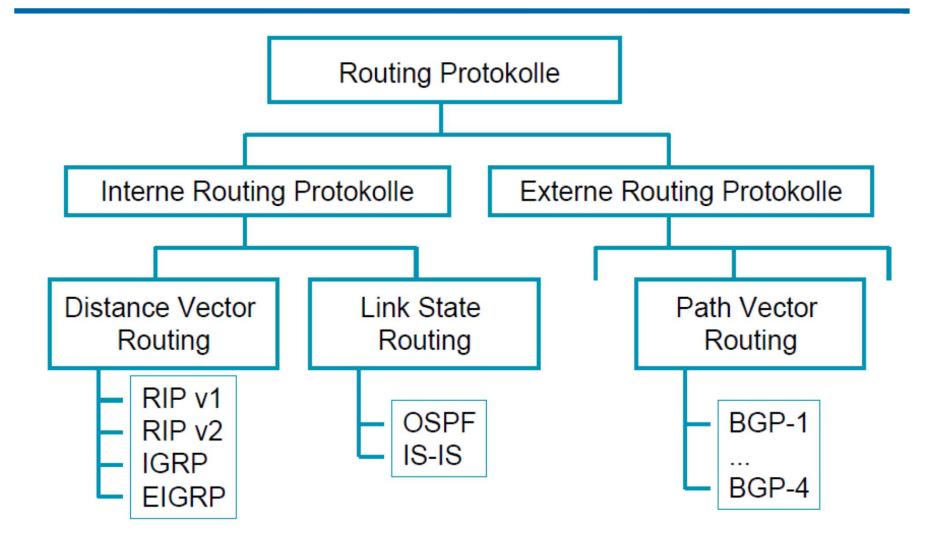
Beispiele für statische Routen

Default-Gateway ins Internet bei DB0SDA

	Dst. Address	Gateway	Distance	Routing Mark	Pref. Source
AS	▶ 0.0.0.0/0	137.226.79.97 reachable 1Internet DFN	1		

User / Services Netz bei DB0ACH (dort kein Router vorhanden)

	Dst. Address	Gateway	∇	Distance	Routing Mark	Pref. Source
;;; Sta	atische Route zu User/Servic	es DB0ACH				
AS	44.225.57.0/28	44.224.28.35 reachable 2LinkDB0ACHDB0AVR		1		

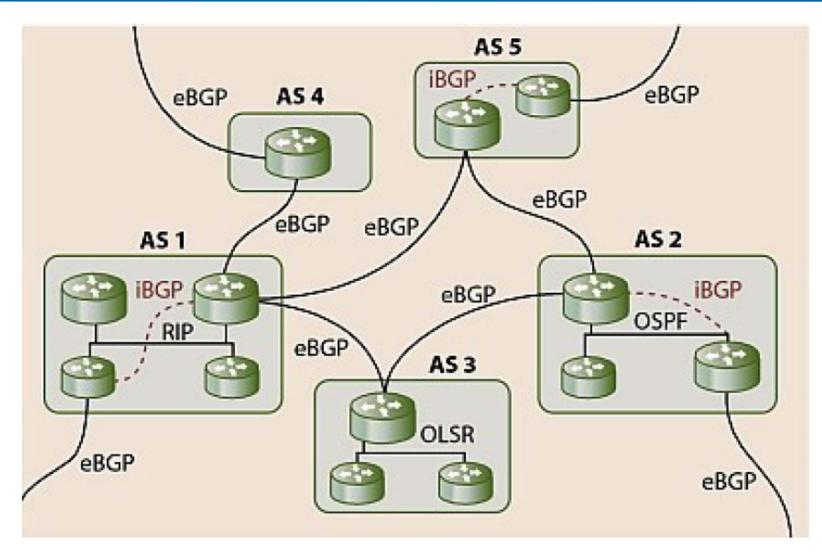

Link Netz bei DB0WA

	Dst. Address	Gateway	Distance 🛆	Routing Mark	Pref. Source
DAC	▶ 44.224.28.200/29	3LinkDB0WA reachable	0		44.224.28.201

Dynamisches Routing

- Automatismus hilft, Routing im Hamnet flexibel zu halten und passt sich Änderungen an.
- Redundanz, falls Funkstrecken ausfallen
- Keine manuelle Pflege notwendig (und machbar)
 - Zur Zeit (9.10.2014) sind im Hamnet 1256 Routing-Einträge in der Tabelle von DB0SDA.
- Einheitliches Protokoll muss aktiviert werden, damit Router Informationen austauschen können.
- Es soll immer die "beste" Route gewählt werden.
- Keine Schleifen oder Umwege

Routing Protokolle



Quelle: Vortrag von Andreas Wißkirchen auf dem Hamnetworkshop 4.5.13 in Aachen

Autonome Systeme

- Wir immer im Amateurfunk: Jeder kocht gern sein eigenes Süppchen (so er denn kann).
- Aufteilung des Hamnets in Autonome Systeme (AS)
- Grenzen orientieren sich an den ehemaligen Oberpostdirektions-Bezirken (Distrikte im DARC e.V.)
 - Diese Wahl ist nicht immer sinnvoll, je nach Netzausbau, Topologie und Datenverkehrsaufkommen.
 - Daher im Einzelfall andere Zusammenlegung (z.B. Mönchengladbach & Viersen -> Distrikt Köln Aachen
- An den Übergangsstellen muss (!) eBGP als Protokoll verwendet werden, damit das gesamte Netz funktioniert.

Beispiel Routing mit eBGP zwischen AS

Quelle: Vortrag von Andreas Wißkirchen auf dem Hamnetworkshop 4.5.13 in Aachen

Routing innerhalb eines AS

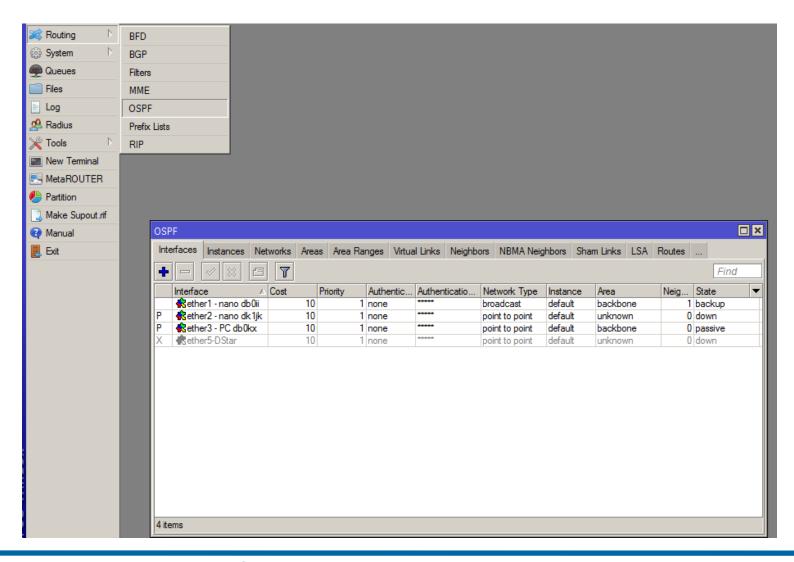
- Wahl des internen Routing-Protokolls bleibt freigestellt.
- Konsens der Betreiber innerhalb des AS ist notwendig.
- Bis jetzt sind zwei Varianten etabliert:
 - iBGP
 - OSPF
- Die Router an AS-Übergängen (Boarder-Router) müssen bei Verwendung von OSPF dennoch auch ein vollvermaschtes iBGP-Netz aufbauen.
- Jeder Router teilt dem Netzwerk mit, welche IP-Bereiche er direkt erreichen kann und für die er somit zuständig ist.

iBGP

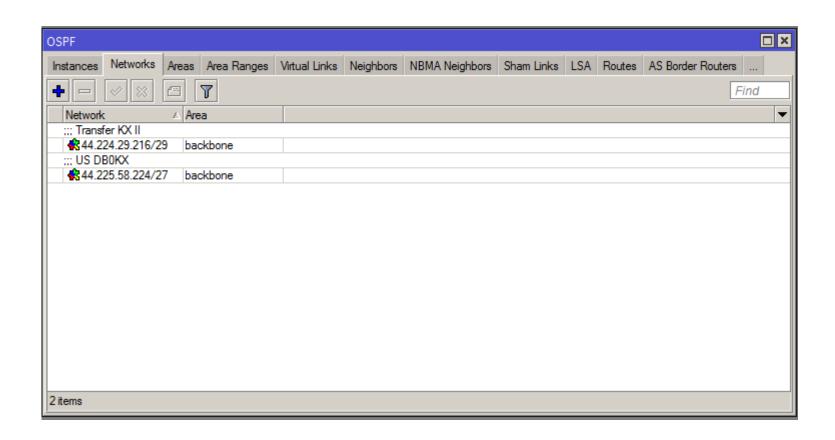
- Als Erstes im Hamnet benutzt.
- In jeden Router müssen die Nachbar-Router eingetragen werden.
- Soll eine Vollvermaschung vermieden werden, ist die Vergabe und Koordination von Confederation-Nummern notwendig. Diese Kennzeichnen jeden Router innerhalb eines AS.
- Die Anzahl der Funkstrecken wird nicht in der Bewertung der Routen berücksichtig.
- Bei unsachgemäßer Konfiguration und redundanten Pfaden können Routen ständig hin- und her- klappen.

OSPF

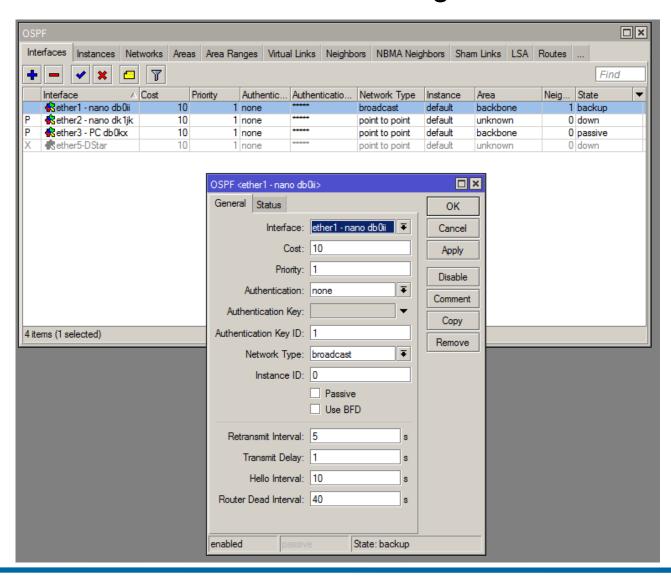
- Nachbar-Router finden sich meist über die Broadcast-Adresse des Link-Netzes automatisch.
- Falls nicht kann Nachbar manuell eingetragen werden.
- Kennzeichnungsnummern wie bei BGP nicht notwendig.
- Anzahl der Linkstrecken wird in der Wahl der Routen berücksichtigt, falls es mehrere Wege gibt.
- Noch geringe Verbreitung im Hamnet

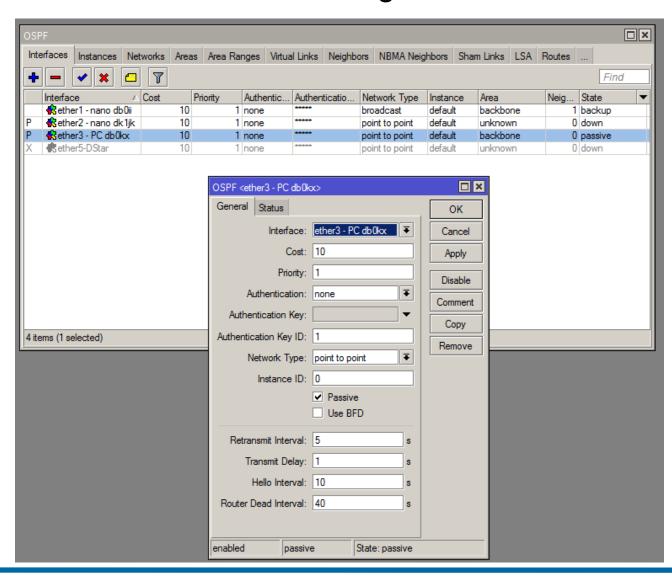

Vor- und Nachteile iBGP vs. OSPF

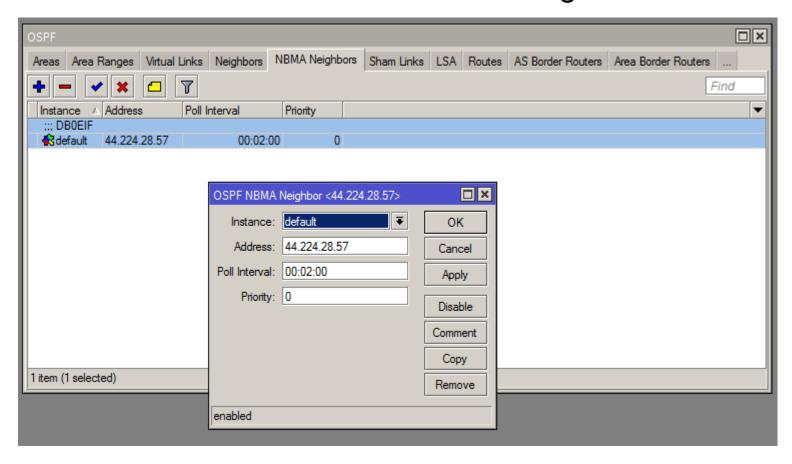
iBGP	OSPF
+ Weite Verbreitung im Hamnet	 Noch geringe Verbreitung / begrenzte Erfahrung
 Nimmt den ersten verfügbaren Weg, nicht den kürzesten. 	+ Nimmt den kürzesten Weg, passt sich dynamisch an.
- Nachbarn müssen explizit eingetragen werden.	+ Nachbarn werden meist über Broadcast automatisch gefunden.
- Um eine Vollvermaschung zu vermeiden, müssen Confederation- Nummern vergeben werden.	+ Kein Verwaltungsaufwand von zusätzlichen Nummern.


Anleitung zu OSPF verfügbar unter

https://www.afu.rwth-aachen.de/index.php/projekte/hamnet/infos-fuer-betreiber/ospf-tutorial

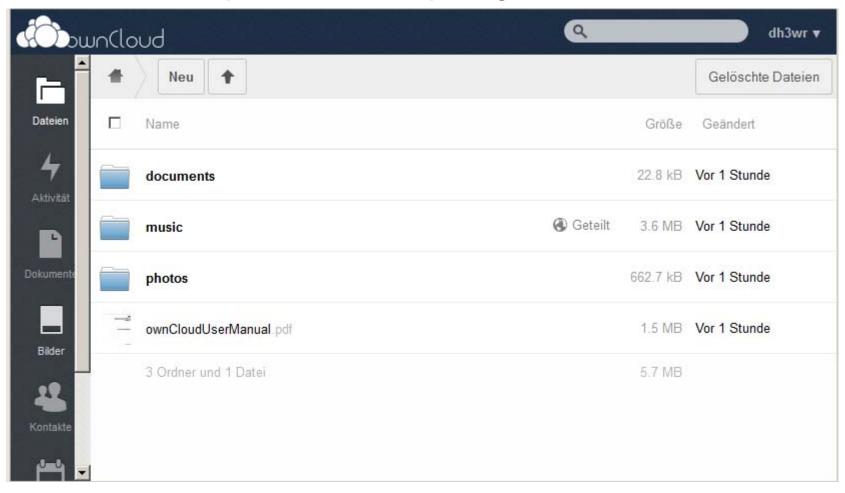

Zugriff auf die OSPF Steuerung


Selbst erreichbare Netze eintragen


Link Interfaces konfigurieren

OSPF auf Usereinstiegen deaktivieren

Wenn Nachbarn nicht automatisch gefunden werden, kann man diese manuell eintragen.



Neue Dienste an der RWTH Aachen für Hamnet

- AfuCloud Speicherplatz im Hamnet
- Automatische Überwachung
- Landkarten Open Street Map

AfuCloud – Speicherplatz im Hamnet

http://db0sda.ampr.org/owncloud

Automatische Überwachung

- Erreichbarkeit von Geräten (ping)
- Ordentliche Funktion von Diensten
- Ampel-Anzeige
- Email/Funkruf-Benachrichtigung
- App für Handy verfügbar

Nagios[®]

Automatische Überwachung

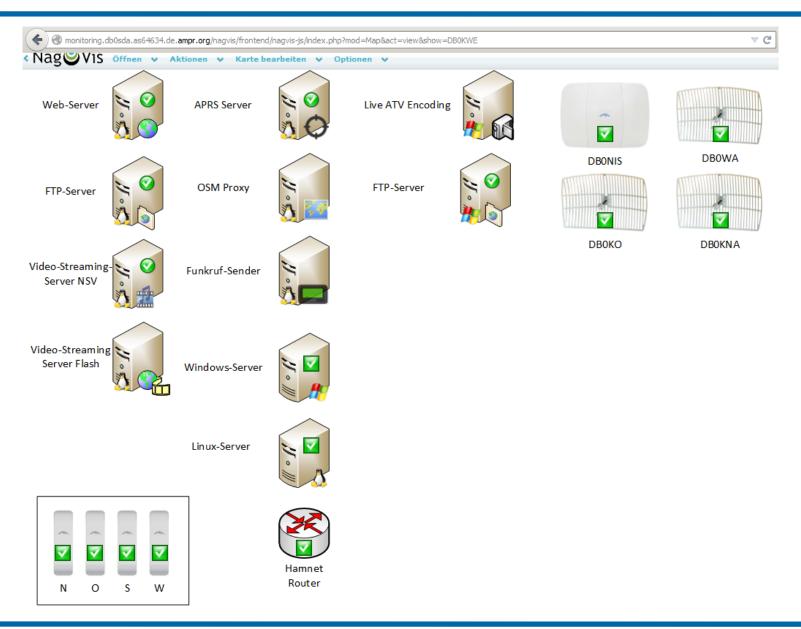
Current Network Status

Last Updated: Fri Oct 10 11:20:27 CEST 2014 Updated every 90 seconds Nagios® Core™ 3.5.1 - www.nagios.org Logged in as *nagiosadmin*

View History For all hosts View Notifications For All Hosts View Host Status Detail For All Hosts

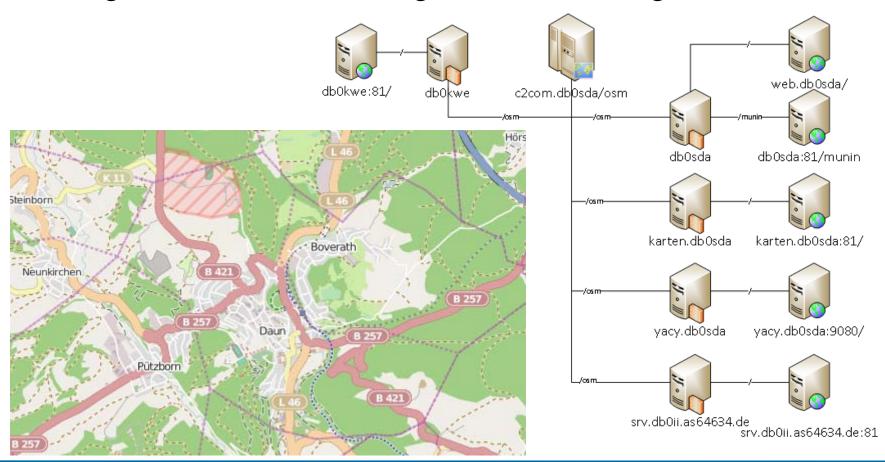
Nagios[®]

Service Status Totals



?

Service Status Details For All Hosts


lost ♣♣	Service ◆◆	Status ★	Last Check ★	Duration ★◆	Attempt ★◆	Status Information
aprs.db0sda.ampr.org	APRS Filter	OK	2014-10-10 11:19:37	28d 16h 52m 5s	1/4	check_tcp v2.0 (monitoring-plugins 2.0)
	APRS Status	ок	2014-10-10 11:19:38	28d 16h 51m 35s	1/4	HTTP OK: HTTP/1.1 200 OK - 3151 bytes in 0.009 second response time
	SSH	OK	2014-10-10 11:19:39	31d 15h 47m 54s	1/4	SSH OK - OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 (protocol 2.0)
core-router.db0avr.ampr.org	SSH connectivity	OK	2014-10-10 11:19:41	32d 18h 48m 54s	1/4	SSH OK - ROSSSH (protocol 2.0)
core-router.db0ko.ampr.org	SSH connectivity	OK	2014-10-10 11:19:42	5d 16h 6m 9s	1/4	SSH OK - ROSSSH (protocol 2.0)
core-router.db0kwe.ampr.org	SSH connectivity	OK	2014-10-10 11:19:44	7d 20h 52m 7s	1/4	SSH OK - ROSSSH (protocol 2.0)
core-router.db0sda.ampr.org	DHCP Server auf dem Mikrotik Board	ОК	2014-10-10 11:19:45	31d 19h 48m 49s	1/4	OK: Received 1 DHCPOFFER(s), 1 of 1 requested servers responded, max lease time = 259200 sec.
	SSH connectivity	OK	2014-10-10 11:19:48	32d 18h 48m 54s	1/4	SSH OK - ROSSSH (protocol 2.0)
core-router.db0wa.ampr.org	SSH connectivity	OK	2014-10-10 11:19:48	7d 20h 52m 3s	1/4	SSH OK - ROSSSH (protocol 2.0)
core-user5ghz.db0sda.ampr.org	SSH connectivity	OK	2014-10-10 11:19:50	32d 18h 48m 53s	1/4	SSH OK - ROSSSH (protocol 2.0)
db0ach.ampr.org	НПР	ОК	2014-10-10 11:19:52	4d 17h 7m 0s	1/4	HTTP OK: HTTP/1.1 200 OK - 3839 bytes in 0.034 second response time
	SSH	OK	2014-10-10 11:19:53	4d 17h 6m 58s	1/4	SSH OK - OpenSSH_6.2 (protocol 2.0)
db0ko.ampr.org	HTTP	ОК	2014-10-10 11:19:54	5d 16h 5m 57s	1/4	HTTP OK: HTTP/1.1 200 OK - 348 bytes in 0.036 second response time
db0kwe.ampr.org	APRS Filter	ОК	2014-10-10 11:19:56	148d 6h 7m 55s	1/4	check_tcp v2.0 (monitoring-plugins 2.0)
	APRS Status	ОК	2014-10-10 11:19:59	7d 20h 51m 53s	1/4	HTTP OK: HTTP/1.1 200 OK - 9280 bytes in 0.071 second response time
	FTP	ОК	2014-10-10 11:19:59	0d 0h 48m 47s	1/4	FTP OK - 0.030 second response time on 44.225.56.200 port 21 [220 FTP server ready]
	НТТР	ОК	2014-10-10 11:20:00	7d 20h 51m 51s	1/4	HTTP OK: HTTP/1.1 200 OK - 91517 bytes in 1.289 second response time
	Icecast Stream DB0KO V	CRITICAL	2014-10-10 11:20:01	2d 17h 15m 33s	4/4	Stream at: "http://44.225.56.200:9000/live_db0ko.nsv" was not found.

Automatische Überwachung

Open Street Map: Verteilter Cluster

- Karten-Kacheln werden in Aachen berechnet
- Verteilung über Load Balancing Cluster
- Möglichst weite Verteilung und Verbreitung im Hamnet

Ende

Vielen Dank für Ihr Interesse